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1 Introduction
From the local taxi station dispatcher to Amazon.com, the need for efficient transportation
of people, goods or services, arises in virtually every sector of the modern economy.
Providing quick, reliable service while keeping down expenses (on fuel, labor, fleets, etc.), is
an essential component of the business model for airliners, shipping companies, retail and
wholesale sellers, to name just a few. A large airliner, for instance, can have hundreds of
airplanes, going to hundreds of different destinations. Planning the route of each airplane,
considering factors like demand, carrying capacity, times, weather, fuel and staff costs, is
clearly beyond the capabilities of a single dispatcher using intuition, pen and paper.

Instead, mathematical precision, large computing power and clever algorithms are necessary.
The practical problem is formulated as a constrained mathematical optimization problem.
Destinations and distances between them are represented as a graph, the routing plan as a
set of paths on the graph, and each practical consideration mentioned above either as a
hard constraint (an airplane can’t take off with more people than seats), or preferences
which go into the objective function (using 50 fully loaded planes instead of 100 half-empty
ones might be a good idea, all other things being equal; See [1] for an attempt to model
and solve airplane routing problems). Unfortunately, exact solutions for even the most
simplified logistics problems are intractable.

In this paper, we focus on the Vehicle Routing Problem (VRP), originally known as the
Truck Dispatcher Problem [2]. It is an old problem, dating back at least to the 1950’s. It is
simple to define, but not easy to solve. VRP is a problem interesting both to academia and
industry, and has become a standard benchmark in Operations Research. More specifically,
the problem we benchmark in this paper is known as the Equal Demand Capacitated
Vehicle Routing Problem (EDCVRP). EDCVRP is a special case of the Capacitated Vehicle
Routing Problem (CVRP). Both CVRP and EDCVRP are defined in section 2.
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This research examines LightSolver (https://lightsolver.com/), a quantum-inspired
optical device designed to solve challenging optimization problems. In Lightsolver’s Laser
Processing Unit (LPU), a spatially coupled array of lasers is configured in way that reaches
a solution more accurate and orders of magnitude faster than any platform[3, 4, 5]. The
results presented in this paper are of the digital Laser Processing Unit (d-LPU) which
emulates the laser dynamics, running on a single core CPU (11th Gen Intel(R) Core(TM)
i7-11700K @ 3.60GHz, 3600 Mhz).

LightSolver’s digital simulator is benchmarked against Gurobi [6], a widely used commercial
optimization solver. For Gurobi, we formulate the problem as a Integer Linear Programming
(ILP) problem. In fact, we try two different formulations on Gurobi, the first is taken
from [7], and the second from [8]. For LightSolver, we formulate the same problem as
a Quadratic Unconstrained Binary Optimization (QUBO) problem. The popularity of
QUBO formulations for optimization problems has surged over the past couple of decades,
primarily due to the emergence of Quantum computers [9]. This formulation is used by
Quantum Annealers [10], like D-Wave’s Quantum Processing unit (QPU) as well as by
gate based quantum computers, via the Quantum Approximate Optimization Algorithm
(QAOA) [11]. This same formulation can be adapted to LightSolver’s optical architecture
and its digital simulator.

The paper is structured as follows: In section 2 we define CVRP and EDCVRP, and
expand on its applications, as well as its challenges. In section 3 we show how to formulate
EDCVRP as a QUBO problem, in order to solve it on LightSolver’s digital simulator. In
section 4, we present two formulations of the same problem as ILP instances, which are
used for Gurobi. Our experimental setup and results are outlined in section 5. Finally,
section 6 includes a discussion of the reults, and future research directions.

2 Vehicle Routing Problem
The Vehicle Routing Problem (VRP) stands as a quintessential challenge in the realm of
optimization and logistics, tasked with finding the most efficient way to deliver goods or
services from a central depot to a set of customers using a fleet of vehicles. The roots of
VRP can be traced back to the pioneering work of George Dantzig and John Ramser in the
1950s. Their initial formulation laid the foundation for addressing distribution problems
that abound in transportation and logistics domains. VRP and its variants have since
captured the attention of researchers, inspiring the development of numerous solution
approaches ranging from exact algorithms to heuristics and metaheuristics.

VRP involves optimizing the routes of a fleet of vehicles to serve a set of customer demands
while adhering to certain constraints. Each customer must be visited exactly once, and
vehicles must travel from the central depot to customers and eventually return to the depot.
The primary goal is to minimize total transportation costs, encompassing factors such as
vehicle distances, time, or costs. If the fleet consists of a single vehicle, the problem is
equivalent to the famous Travelling Salesperson Problem(TSP).

Despite decades of research, VRP remains a challenging problem. It is known to be
computationally hard (NP-hard), rendering exact solutions infeasible for moderately large
practical problems. Developing effective approximation algorithms, robust heuristics, and

https://lightsolver.com/
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hybrid methods that balance solution quality and computational efficiency remains a
forefront challenge.

We define a widely studied variant of VRP, called the Capacitated Vehicle Routing Problem
(CVRP),

Definition 1. In the Capacitated Vehicle Routing Problem (CVRP), a fleet of k
Trucks, located at a depot v0, needs to deliver goods to a set of sites, V = {v1, . . . , vn}. Each
site has a demand for quantity Di of goods, while all trucks have the same carrying capacity,
C. between any two locations (two sites or the depot and a site) vi, vj, the distance is dij.
The goal is to plan the routes of all trucks, so that every site is supplied with it’s demand
Di, and each truck finishes its route at the depot, while minimizing the total distance driven
by all trucks. Each site must be supplied by exactly one truck.

Definition 2. The Equal Demand CVRP (EDCVRP) [12], is a special case of CVRP,
where all customers have unit demand. That is, Di = 1 for all i ∈ V .

3 QUBO Formulation of EDCVRP
Quadratic Unconstrained Binary Optimization, or QUBO, is an optimization problem of
the form [13]:

min
x∈BD

x⊤Qx (1)

where B = {0, 1} is a binary set and W ∈ RD×D is a real-valued matrix. The ability to
efficiently minimize (1) using quantum computers paves the way to the design of powerful
solvers for fundamental optimization. Importantly, QUBO optimization becomes appealing
when the run-time of quantum-based algorithms is smaller than that of classic computers.
We solve instances of EDCVRP by formulating it as a QUBO problem. Our formulation
proceeds as follows:

M trucks, each of capacity K, serve N = MK customers, all with demand 1. All
trucks start and end at the depot. The distance between locations vi and vj is dij, for
i, j ∈ [N ]. Because all demands are equal to 1, in any feasible solution each truck must
visit exactly K customers. In the QUBO formulation, we define decision variables xmkn,
for m ∈ [1,M ], k ∈ [1, K], n ∈ [1, N ]. These decision variables encode a solution as follows:

• xmkn = 1 if truck m is at its kth site, while serving customer n.

• xmkn = 0 if truck m at its kth site did not serve customer n.

Denote D := MKN . Following standard practice when transforming constrained problems
to QUBO, we encode the problem as:

min
x∈BD

λx⊤Qconstraintsx+ x⊤Qcostx (2)

Qconstraints,Qcost ∈ RD×D, λ ∈ R+. We choose the matrices and λ in such a way, that
x⊤Qconstraintsx ≥ 0 for any x ∈ BD, with equality iff x encodes a feasible solution to the
problem. Qcost corresponds to the objective function in the original, constrained problem.
Observe that by taking sufficiently large λ, we can ensure that any solution x minimizing
(2), must satisfy x⊤Qconstraintsx = 0, thus being a feasible solution.
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Let us first write out what are the constraints on variables xmkn, and then proceed to
examine how we convert these constraints to QUBO form. The constraints are:

1.
∑N

n=1 xmkn = 1, for any m ∈ [1,M ], k ∈ [1, K]. When truck m is at its kth site, it
serves exactly one customer.

2.
∑M

m=1

∑K
k=1 xmkn = 1, for every N ∈ [1, N ]. Every customer n is served one time by

one truck.

These constraints can be converted to QUBO form in a fairly straightforward way. Indeed,
an assignment the decision variables xmkn satisfy the first constraint iff

M∑
m=1

K∑
k=1

(
N∑

n=1

xmkn − 1)2 = 0,

and it satisfies the second constraint iff

N∑
n=1

(
M∑

m=1

K∑
k=1

xmkn − 1)2 = 0.

Combining the two, we obtain:

Hconstraints(x) = x⊤Qcostx =
M∑

m=1

K∑
k=1

(
N∑

n=1

xmkn − 1)2 +
N∑

n=1

(
M∑

m=1

K∑
k=1

xmkn − 1)2 = 0

Next, we turn to the QUBO formulation corresponding to the objective function to be
minimized. Recall that this should correspond to the total distance traversed by all trucks.
This can be expressed as:

Hcost(x) = x⊤Qconstraintsx =
M∑

m=1

N∑
n=1

d0nxm1n+
M∑

m=1

N∑
n=1

dn0xmKn+
M∑

m=1

K−1∑
k=1

N∑
n1,n2=1

dn1n2xmkn1xm(k+1)n2

.

The first summand corresponds to the first leg of each route, k = 1 , where the trucks
leave the depot 0. Similarly, the second summand corresponds to the last leg of each route,
k = K, where the trucks return to the depot 0. The last summand corresponds to all the
intermediate legs of each route. The distance dn1n2 between sites n1 and n2 will appear in
the sum iff some truck m served client n1 as its kth site, and then immediately traveled to
serve client n2 as its (k + 1)th site. Our final QUBO problem, therefore, is:

min
x∈BMNK

Hcost(x) + λHconstraints(x)

for sufficiently large λ.
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4 ILP formulations of Equal Demand CVRP
We formulate the EDCVRP problem also as an Integer Linear Programming problem.
We use two different formulations, and test them both. Let 0 be the depot, V = [1, N ]
customer locations, and {dij}i ̸=j the distances between any two sites in V∪{0}. We assume
M trucks, capacity K per truck, where N = MK, and demand 1 for all customers.

Formulation 1 [7]:

xij - N(N + 1) decision variables, for each edge (i, j), 0 ≤ i ̸= j ≤ N .

fij - N(N + 1) integer variables, for each edge (i, j), 0 ≤ i ̸= j ≤ N .

In any solution, we would like the decision variable xij to be equal to 1 iff edge (i, j) was
traversed by some truck. Thus, the total distance travelled by all trucks, is the sum of
xijfij over all edges (i, j).

Objective function:

min
xij∈B|E|

∑
(i,j)∈E

dijxij

The integer variables fij, represent the remaining capacity of the truck that traversed the
edge (i, j), when it was at location i. If no truck traversed edge (i, j), then fij = 0.

Constraints:

1.
∑N

i=0 xij = 1, j ∈ [1, N ]. (For each non-depot site j, exactly one of its incoming
edges is traversed).

2.
∑N

j=0 xij = 1. i ∈ [1, N ]. (For each non-depot site i, exactly one of its outgoing edges
is traversed).

3.
∑N

j=1 x0j = M . (Exactly M edges that go out of the depot, 0, are traversed).

4.
∑N

i=1 xi0 = M . (Exactly M edges that go into the depot, 0, are traversed).

5. 0 ≤ fij ≤ Kxij. (Capacity of any truck at any point is at most K. If edge (i, j) not
traversed, fij = 0).

6.
∑n

i=0 fik −
∑n

j=0 fkj = 1, k ∈ [1, N ]. (Demand 1 for all customers).

Formulation 2 [8]:

In the second formulation, the role of xij is the same as in the first. However, instead of
using N(N +1) integer variables fij , one for each edge, we only use N integer variables, ui,
1 ≤ i ≤ N . In any solution, ui represents the remaining capacity of the truck that visited
site i, at the time of its visit.

xij - N(N + 1) decision variables, for each edge (i, j), 0 ≤ i ̸= j ≤ N .

ui - N integer variables, for each non-depot location i ∈ [1, N ].

The Objective function and constraints 1-4 are as in the first formulation. The last
constraint compactly says that in any edge (i, j) that is traversed, the capacity of the truck
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that traversed it decreased by one when it moved from i to j. In any case, the capacity at
each non-depot site is between 1 and K.

Objective function:

min
xij∈B|E|

∑
(i,j)∈E

dijxij

Constraints:

1.
∑N

i=0 xij = 1, for all j ∈ [1, N ].

2.
∑N

j=0 xij = 1, for all i ∈ [1, N ].

3.
∑N

j=1 x0j = M .

4.
∑N

i=1 xi0 = M .

5. ui − uj +Kxij ≤ K − 1, for all 1 ≤ i ̸= j ≤ N . (Demand 1 for all customers).

5 Experiments and Results

5.1 Data

We used the OSMnx [14] to collect the locations data. The distances are driving distances,
in an area of Dallas, Texas. Using the distances obtained with OSMnx, we created
15 instances of EDCVRP. Each instance is defined by the number of trucks M , with
M ∈ {5, 10, 15, 20}, and the number of customers per truck K, where K ∈ {2, 4, 8, 10}
(20X10 was not tested). The number of customers is always taken to be N = KM .

5.2 Experiments

Each instance was solved with the LightSolver’s digital solver (LS), after it was formulated
as a QUBO problem, as described in section 3. For comparison, we also used Formulation 1
and Formulation 2 described in section 4, running both of them on Gurobi (GUR1, GUR2,
respectively). Each run was set with a 10 seconds time limit. We report, in each case,
the best solution value (minimum total distance) found by each solver, after 0.1, 1 and 10
seconds. Note that in many instances Gurobi does not find any feasible solution within a
given time range.

5.3 Results

The results of our experiments are summarized in Figure 1. Observe that in the larger
instances, Gurobi does not find any feasible solution within the time limit. Indeed, after
10 seconds,GUR1 does not reach a feasible solution in 8 out of 15 instances, and GUR2
in 5 instances. LightSolver, on the other hand, always finds a feasible solution even after
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Figure 1: Comparison between the solutions obtained by LightSolver and those obtained
by Gurobi, on both formulations. GUR1 and GUR2 are the first and second formulations,
defined in section 4.
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0.1 seconds. Moreover, when Gurobi does find a solution, in either formulation, it is never
better than that found by LightSolver.

Our results also indicate why we have decided to include both GUR1 and GUR2 in our
experiments. GUR2 finds feasible solutions on more instances than GUR1. However, when
both find feasible solutions, those of GUR1 are usually better.

6 Conclusion
In any practical application of a routing problem, it is unrealistic to expect that all prior
estimates would be completely accurate. For instance, suppose we are faced with the
problem of assigning routes and jobs to technicians. A technician might call in sick, a
customer might cancel or postpone, a vehicle can break down, jobs might take more time
than expected, traffic jams can block routes, etc. A plan that seemed optimal in the
morning, might turn out to be inefficient, or even impossible, in real-time. Such a dynamic
environment calls for fast solvers, that can adapt to the constant inflow of new information
and generate new plans accordingly (see [15] for a survey on the Dynamic Vehicle Routing
Problem).

In our research, we show that LightSolver Digital platform is a suitable product for this
challenge. We saw in section 5 that LightSolver generated good solutions in fractions of a
second, even for instances of more than 100 clients. LightSolver extends an invitation for
a business collaboration, to any enterprise in need of feasible, efficient, fast solutions for
their logistics problems. Demos can be booked at http://lightsolver.com
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